***Most of the information is from the notes I take during machine learning course @ Edx.com. This is not my original work but a reference guide for me to look back at the course for reference.
Machine Learning: is a computational technique that has its origins in artificial intelligence (AI) and Statistics. Teach computers by example.
Some of the Machine learning solutions include:
1. Classification: Predicting a Boolean true/false value for an entity with an given set of features. e.g: predicting if there will be a class tomorrow or predicting if a chain link is going to break or not.
2. Regression: Predicting a real numeric value for an entity with an given set of features. e.g.: How many people will buy pizza from your shop. Or how many students will attend class tomorrow.
3. Clustering: Grouping entities with similar feature. E.g. which city has an epidemic spreading. What topics students want to learn in class.
4. Recommendation: Recommending an item to an user based on past behavior or preferences of similar users. E.g. Which subjects you can take in college. What pizza offer will a person like.
We use a training set to train and a Test set to see what machine has learnt.
More in details of the classification of problems.
Machine Learning: is a computational technique that has its origins in artificial intelligence (AI) and Statistics. Teach computers by example.
Some of the Machine learning solutions include:
1. Classification: Predicting a Boolean true/false value for an entity with an given set of features. e.g: predicting if there will be a class tomorrow or predicting if a chain link is going to break or not.
2. Regression: Predicting a real numeric value for an entity with an given set of features. e.g.: How many people will buy pizza from your shop. Or how many students will attend class tomorrow.
3. Clustering: Grouping entities with similar feature. E.g. which city has an epidemic spreading. What topics students want to learn in class.
4. Recommendation: Recommending an item to an user based on past behavior or preferences of similar users. E.g. Which subjects you can take in college. What pizza offer will a person like.
We use a training set to train and a Test set to see what machine has learnt.
More in details of the classification of problems.
Classification and Regression
- Classification and regression use data with known values to train a machine learning model so that it can identify unknown values for other data entities with similar attributes.
- Classification is used to identify Boolean (True/False) values. Regression is used to identify real numeric values. So a question like "In this a chair?" is a classification problem, while "How much does this person earn?" is a regression problem.
- Both classification and regression are examples of supervised learning, in which a machine learning model is trained using a set of existing, known data values. The basic principle is as follows:
- Define data entities based on a collection (or vector) of numeric variables (which we call features) and a single predictable value (which we call a label). In classification, the label has a value of -1 for False and +1 for True.
- Assemble a training set of data that contains many entities with known feature and label values - we call the set of feature values x and the label value y.
- Use the training set and a classification or regression algorithm to train a machine learning model to determine a function (which we call f) that operates on x to produce y.
- The trained model can now use the function f(x)=y to calculate the label (y) for new entities based on their feature values (x). In classification, if y is positive, the label is True; if y is negative, the label is False. The function can be visualized as a line on a chart, showing the predicted y value for a given xvalue. The predicted values should be close to the actual known values for the training set, as shown in figure 1 below.
- You can evaluate the model by applying it to a set of test data with known label (y) values. The accuracy of the model can be validated by comparing the value calculated by f(x) with the known value for y, as shown in figure 2.
Figure 1: A trained model | Figure 2: A validated model |
- In a supervised learning model, the goal is to produce a function that accurately calculates the known label values for the training set, but which is also generalized enough to predict accurately for known values in a test set (and for unknown values in production data). Functions that only work accurately with the training data are referred to as "over-fitted", and functions that are too general and don't match the training data closely enough are referred to as "under-fitted". In general, the best functions are ones that are complex enough to accurately reflect the overall trend of the training data, but which are simple enough to calculate accurate values for unknown labels.
Figure 3: An over-fitted model | Figure 4: An under-fitted model |
Clustering
- Clustering is an unsupervised learning technique in which machine learning is used to group (or cluster) data entities based on similar features.
- It is difficult to evaluate clustering models, because there is no training set with known values that you can use to train the model and compare its results.
Recommendation
- Recommender systems are machine learning solutions that match individuals to items based on the preferences of other similar individuals, or other similar items that the individual is already known to like.
- Recommendation is one of the most commonly used forms of machine learning.
*source: edx.com course =
Microsoft: DAT203x Data Science and Machine Learning Essentials
** Not my original work
No comments:
Post a Comment